
Skylar Gering and Julia Sloan

Part 2

Setup Steps

1. VSCode installed

2. Julia installed

3. Git installed

4. Github account

5. Send us the email account associated with your Github (if you
didn’t on Wednesday)

Remote Repo

Review

Local Machine

Remote
State

Local
State

pushclone
pull

Working
Copy

Staging
Area

add

commit

1. Open VSCode

2. Open terminal in VSCode

3. If you don’t have the repo from Part 1:
a. Go to the repo on Github, click the Code button, and copy the HTTPs URL
b. Run git clone `url` from the terminal

4. Navigate to the drawings/ folder in your terminal

5. Run git pull

Review Activity

1. Find a buddy to work with

2. One person in each pair: make a copy of sample_drawings.jl in
the drawings/ folder

3. Name this new file something unique to your group

Review Activity

1. WAIT FOR US TO TELL YOU → ONE GROUP AT A TIME

a. Buddy with the copy of sample_drawings.jl:

i. Add and commit your new file

ii. Pull any changes from the repo

iii. Push your updated version of the repo with the new file (one group at a time!!!)

b. Have your buddy pull so you each have a copy of it

What are Branches?

• Different, and related "working copies" of your code

• Uses:
• Add a new feature while maintaining original code for other people to use
• Experiment with new ideas without having to make copies of all your code
• Collaboration with others

• Main Branch
• Most up-to-date, stable version of the code
• Branch that people using your code will clone

Remote Repo

What are branches?

Local Machine

Remote
State

Local
State

pushclone
pull

Working
Copy

Staging
Area

add

commit

What are branches?

Local Machine Local
State

Staging
Area

add

commit
main

(branch)

switch

What are branches?

Local Machine Local
State

Staging
Area

add

commit
buddy 2

buddy 1

main

switch

1. Run git branch `your_name`

2. Run git branch … what do you see?

3. Run git switch `your_name`

4. Run git branch … what changed?

Making a Branch
Local Machine Local

State

Staging
Area

add

commit

main

switch

Commit
1

main

Making a Branch
Local Machine Local

State

Staging
Area

add

commit

main

switch

Commit
1

main

HEAD

Making a Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

name

HEAD

main

git branch name

Making a Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

name

main

HEAD

git switch name

Make a drawing using emojis!

1. Add your first emojis to your drawing
a. If you’re making the top of the drawing, add emojis to represent time of day

b. If you’re making the bottom of the drawing, add emojis to represent the
surface type (land, ocean, etc.)

2. Add and commit your changes with a
meaningful commit message

1. Now add a few animals to your picture

2. Add and commit your changes with a meaningful
commit message

1. Add any other emojis you want to your picture

2. Add and commit your changes with a meaningful
commit message

3. Run git log

Making a Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

name

main

HEAD

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Commit
2

HEAD

name

main

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Commit
2

HEAD

name

Commit
3

main

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Commit
2

HEAD

name

Commit
3

Commit
4

main

1. Push your code to the remote copy of your branch

2. When you get an error, run the line it tells you to
set the upstream branch
a. git push --set-upstream origin `name`

Look at the repository online. Click on your group’s
file. What do you see if you switch from main to
your branches online?

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Commit
2

HEAD

name

Commit
3

Commit
4

main

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit

HEAD

name

main

git rebase -i HEAD~n

1. Run git log and count how many commits you’ve made
locally (n, which should be 3)
a. **Note: This uses vim**

i. Type :q to exit

1. Squash the commits into one
a. Run git rebase -i HEAD~n
b. **Note: The rebase editor uses vim**

i. Type i to enter insert mode (so you can write)
ii. Hit the esc key to exit insert mode

c. Leave pick in the first line as it is
d. For the rest of the lines, change pick to squash
e. Exit vim by typing :wq

2. On the next page that comes up, exit vim again

1. Run git log

2. How many of your commit messages do
you see?

1. Run git switch main

2. Look at your file - what looks different?

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit

main

name

git switch main

HEAD

1. Look along with your buddy as you each do the
following steps

2. Surface artists: (one at a time!!!)
a. Run git pull
b. Run git merge `your_branch`
c. Run git push to push the merged commit to main

3. Atmosphere artists:
a. After your buddy finishes their steps, run git pull to get their changes
b. Look at your drawing file - what does it look like?

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit

main

name

HEAD

Basic Branch
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit

name

main

HEAD

git merge name

Merges

• Simple Merge
• Two branches both add new, distinct code
• They change different parts of the original code

• Merge Conflict
• Two branches change the same piece of code
• Which branch is correct?

• You will need to manually select which piece of code you want to
keep, as there is no hierarchy on which piece of code is correct.

1. Atmosphere artists: (one at a time!!!)
a. Run git pull
b. Run git merge `your_branch`

Branch #2
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit 1

main

HEADname 2
Squashed
commit 2

Branch #2
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit 1

main

name 2
Squashed
commit 2

HEAD

git switch main

Branch #2
Local Machine Local

State

Staging
Area

add

commit
name

main

switch

Commit
1

Squashed
commit 1

Squashed
commit 2

git merge name

Commit
4

main
HEAD

name 2

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

Commit
1

main

Commit
2

Commit
3

name 2

HEAD

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

Commit
1

main

Commit
2

Commit
3

merge

name 2

Commit
4

HEAD

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

Commit
1

main

Commit
2

Commit
3

name 2

HEAD

<<<<<<<HEAD
Content in the main branch.
=======
Content in the feature branch
>>>>>>>feature

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

Commit
1

main

Commit
2

Commit
3

name 2

HEAD

<<<<<<<HEAD
Content in the main branch.
=======
Content in the feature branch.
>>>>>>>feature

Content in the main branch.

How to resolve Merge Conflict
• Conflict: Git fails during the merge

• Conflict between the current local
branch and the branch being merged

• Git will leave things for you to resolve
manually in conflicted files

Commit
1

main

Commit
2

Commit
3

name 2

HEAD

<<<<<<<HEAD
Content in the main branch.
=======
Content in the feature branch.
>>>>>>>feature

Content in the main branch.

Content in the feature branch.

1. Resolve your merge conflict

2. Make sure to remove all the
<<<<<, =====, >>>>> characters

3. Make sure the final image makes sense :)

1. One at a time (atmosphere folks)!!!
a. Run git add .
b. Run git commit -m “message”
c. Run git pull
d. Run git push

What causes merge conflicts?

• In part 1, you edited separate files

→ no merge conflict

• Today, you both tried to change the same part of the same file

→ merge conflict

How to handle merge conflicts:

Use git status to check if you need to add or commit anything

add and commit your changes

pull any changes from the remote branch (do this often!!)

Deal with any merge conflicts locally

push to remote

Basic Git Commands

• git add – add changes to the staging area

• git commit – move changes from the staging area to local state

• git push – move changes from local state to remote state

• git pull – move changes from remote state to local state

• git clone – create local repo from remote repo

• git status – see what files are being tracked/have changes

• git log – see last few commit messages

• git branch – create a new branch/see branches

• git switch – switch between branches

• More - https://git-scm.com/doc

Any questions?

Getting GitHub Set Up

• GitHub Desktop
• https://docs.github.com/en/desktop/installing-and-configuring-github-deskto

p/overview/getting-started-with-github-desktop

• GitHub through terminal:
• Need to setup SSH:

• https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

• Switch current repos to SSH:
• https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repo

sitories#switching-remote-urls-from-https-to-ssh

More resources:
• Branching Tutorial

• https://learngitbranching.js.org/

• Merge Conflicts
• https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

• Protecting a Branch
• https://docs.github.com/en/repositories/configuring-branches-and-merges-i

n-your-repository/defining-the-mergeability-of-pull-requests/about-protecte
d-branches

• Pull Requests
• https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/p

roposing-changes-to-your-work-with-pull-requests/about-pull-requests

